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Chorismate mutase/prephenate dehydrogenase from Haemophilus influenzae

Rd KW20 is a bifunctional enzyme that catalyzes the rearrangement of

chorismate to prephenate and the NAD(P)+-dependent oxidative decarboxyl-

ation of prephenate to 4-hydroxyphenylpyruvate in tyrosine biosynthesis. The

crystal structure of the prephenate dehydrogenase component (HinfPDH) of

the TyrA protein from H. influenzae Rd KW20 in complex with the inhibitor

tyrosine and cofactor NAD+ has been determined to 2.0 Å resolution. HinfPDH

is a dimeric enzyme, with each monomer consisting of an N-terminal �/�
dinucleotide-binding domain and a C-terminal �-helical dimerization domain.

The structure reveals key active-site residues at the domain interface, including

His200, Arg297 and Ser179 that are involved in catalysis and/or ligand binding

and are highly conserved in TyrA proteins from all three kingdoms of life.

Tyrosine is bound directly at the catalytic site, suggesting that it is a competitive

inhibitor of HinfPDH. Comparisons with its structural homologues reveal

important differences around the active site, including the absence of an �–�
motif in HinfPDH that is present in other TyrA proteins, such as Synechocystis

sp. arogenate dehydrogenase. Residues from this motif are involved in

discrimination between NADP+ and NAD+. The loop between �5 and �6 in

the N-terminal domain is much shorter in HinfPDH and an extra helix is present

at the C-terminus. Furthermore, HinfPDH adopts a more closed conformation

compared with TyrA proteins that do not have tyrosine bound. This

conformational change brings the substrate, cofactor and active-site residues

into close proximity for catalysis. An ionic network consisting of Arg297 (a key

residue for tyrosine binding), a water molecule, Asp206 (from the loop between

�5 and �6) and Arg3650 (from the additional C-terminal helix of the adjacent

monomer) is observed that might be involved in gating the active site.

1. Introduction

The TyrA protein family comprises dehydrogenases that are

dedicated to l-tyrosine biosynthesis. These dehydrogenases can be

classified into three groups according to their substrate specificity.

Prephenate dehydrogenases (TyrAp or PDH) only use prephenate as

a substrate, arogenate dehydrogenases (TyrAa of ADH) only accept

arogenate and cyclohexadienyl dehydrogenases (TyrAc or CDH) use

either prephenate or arogenate. The TyrA dehydrogenases convert

prephenate to tyrosine through two different routes (Fig. 1). In the

prephenate pathway, PDH enzymes catalyze the NAD(P)+-depen-

dent oxidative decarboxylation of prephenate to 4-hydroxyphenyl-

pyruvate (HPP), which is then converted to l-tyrosine by an amino-

transferase. In the arogenate route, prephenate is first transaminated

to l-arogenate by prephenate aminotransferase. l-Arogenate is then

decarboxylated and converted to l-tyrosine by ADH. In addition to

diverse substrate specificity, the TyrA family also exhibits diversity

with respect to its cofactor specificity. TyrA proteins may be specific

for NAD+ or NADP+ or may use both. TyrA proteins exist as either

monofunctional or bifunctional proteins. The common fusion part-

ners of TyrA proteins include chorismate mutase (aroQ; Calhoun

et al., 2001), 3-phosphoshikimate 1-carboxyvinyltransferase (aroF;



Beller et al., 2006) and an ACT (aspartate kinase–chorismate mutase–

TyrA) regulatory domain (Chipman & Shaanan, 2001; Grant, 2006).

TyrAp is mostly present in low-GC Gram-positive organisms, such

as Bacillus subtilis. TyrAa is abundant in higher plants and in at least

three bacterial lineages, cyanobacteria, actinomycetes and Nitroso-

monas europaea, whereas TyrAc is found in most bacteria. An

analysis of the phylogenetic relationship of TyrA enzymes identified a

distinct subgroup within the TyrAc group, denoted here as TyrAc_�
(Song et al., 2005). When the primary sequences of these TyrAc_�
proteins are aligned with those of other TyrA groups, it is immedi-

ately apparent that the TyrAc_� proteins contain a number of

deletions within the catalytic core region and possess a second

functional domain, which classifies them as bifunctional enzymes.

Biochemical studies have shown that this subgroup displays narrower

substrate and cofactor specificity compared with the parent TyrAc

enzymes. The TyrA enzymes from Escherichia coli and Klebsiella

pneumoniae are the two best characterized TyrAc_� enzymes and

both prefer prephenate over arogenate by more than one order of

magnitude and only use NAD+ as cofactor (Ahmad & Jensen, 1987;

Turnbull et al., 1990). The studies further suggested that the TyrAc

family, with its broad substrate specificity, represents the ancestral

enzymes from which the TyrAc_�, TyrAa and TyrAp enzymes have

evolved to exhibit a narrower range of substrate specificity (Song et

al., 2005).

The regulation of TyrA activity is important as prephenate is a

common precursor in the biosynthesis of tyrosine and phenylalanine.

TyrA enzymes are regulated by various mechanisms, including

feedback inhibition and gene regulation by the Tyr operon (Cobbett

& Delbridge, 1987). Kinetic studies of chorismate mutase/prephenate

dehydrogenase (CM/PDH) from E. coli have led to the proposal of

two different types of mechanism for tyrosine inhibition. Christo-

pherson (1985) concluded that tyrosine acts as a competitive inhibitor

in the dehydrogenase reaction, whereas Turnbull, Morrison et al.

(1991) suggested that tyrosine binds at a distinct allosteric site.

B. subtilis PDH is inhibited competitively by tyrosine and non-

competitively by tryptophan and HPP (Champney & Jensen, 1970).

B. subtilis PDH has a C-terminal fusion of an ACTregulatory domain.

The ACT domain was first identified in 1995 and is a small-molecule

binding domain that is found in enzymes involved in amino-acid

metabolism and transcription regulation. Small-molecule binding to

the ACT domain is thought to control the enzyme activity through

allosteric regulation. Thus, the noncompetitive inhibition by trypto-

phan and HPP in B. subtilis PDH might be a consequence of the

presence of the ACT domain. Crystal structures of PDH enzymes

from our study and from Aquifex aeolicus (Sun et al., 2009) both

revealed bound tyrosine, but only at the active site, which supports

the role of tyrosine as a competitive inhibitor. The source of tyrosine

in these two structures originated from protein expression and co-

crystallization, respectively. Not all TyrA enzymes are inhibited by

tyrosine; Synechocystis ADH, for example, is completely insensitive

to competitive inhibition by tyrosine (Legrand et al., 2006). Studies on

A. aeolicus PDH (Sun et al., 2009) showed that His217 is critical for

the inhibitory effect of tyrosine where a His217Ala mutation

completely abolished the inhibitory effect of tyrosine. Studies on

E. coli TyrA reported similar results, in which a His257Ala mutation

(His257 is equivalent to His217 in A. aeolicus PDH) abolished inhi-

bition by tyrosine (Christendat et al., 1998). Comparison of the crystal

structure of Synechocystis ADH with that of A. aeolicus PDH

revealed that Val182 is present in this location, which could account

for the loss of tyrosine inhibition.

Studies of the enzymatic mechanisms of TyrA enzymes have

revealed some variations in the reaction pathway. The kinetic data for

Synechocystis ADH suggested a sequential substrate-binding event in

which arogenate first binds to the protein, followed by the cofactor
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Figure 1
Tyrosine biosynthetic pathway. The figure is modified from The Enzyme Database (http://www.enzyme-database.org).



(Beller et al., 2006), whereas kinetic studies on E. coli and Arabi-

dopsis thaliana suggested a random addition of NAD+ and prephe-

nate (Sampathkumar & Morrison, 1982; Rippert & Matringe, 2002).

Kinetic studies using 13C-labeled substrates suggested a mechanism

in which decarboxylation and proton transfer occur in a concerted

manner (Hermes et al., 1984). Kinetic and mutagenesis studies of

several systems have identified key active-site residues (Christendat

et al., 1998; Christendat & Turnbull, 1999). Conserved histidine,

arginine and serine residues are critical for enzyme activity. For

instance, in E. coli TyrA His197 has been proposed to facilitate

hydride transfer from prephenate to NAD+ by polarizing the 4-OH

group of prephenate, whereas Arg294 is critical for substrate binding.

A His197Ala mutation decreased the dehydrogenase activity signif-

icantly and an Arg294Gln mutation greatly increased the Km, but did

not affect the kcat. In A. aeolicus PDH, Ser126 is hydrogen bonded to

the 40-OH of tyrosine and to NAD+ and could participate in both

catalysis and ligand binding. The Ser126Ala mutation reduced kcat

15-fold and increased Km tenfold.

The TyrA gene from Haemophilus influenza Rd KW20 encodes a

bifunctional enzyme, chorismate mutase (EC 5.4.99.5)/prephenate

dehydrogenase (EC 1.3.1.12) (CM/PDH), with a molecular weight of

43 kDa (residues 1–377) and a calculated isoelectric point of 5.56. The

crystal structure of the prephenate dehydrogenase component

(Hinf PDH; residues 81–377) of this TyrA enzyme was determined in

complex with tyrosine and NAD+ at 2.0 Å resolution and represents

the first PDH structure from a bifunctional TyrA enzyme. The

structure was determined using the semi-automated high-throughput

pipeline of the Joint Center for Structural Genomics (JCSG; Lesley

et al., 2002) as part of the National Institute of General Medical

Sciences’ Protein Structure Initiative (PSI; http://www.nigms.nih.gov/

Initiatives/PSI/).

2. Materials and methods

2.1. Protein production and crystallization

Clones were generated using the Polymerase Incomplete Primer

Extension (PIPE) cloning method (Klock et al., 2008). The gene

encoding Hinf PDH (GenBank AAC22939, gi|1574749; Swiss-Prot

TYRA) was amplified by polymerase chain reaction (PCR) from

H. influenzae Rd KW20 genomic DNA using PfuTurbo DNA poly-

merase (Stratagene) and I-PIPE (Insert) primers (forward primer,

50-ctgtacttccagggcATGCGTGAATCCTATGCCAATGAAAACC-30;

reverse primer, 50-aattaagtcgcgttaGCATAAAACGGCGTAGAA-

CATCTTCAAT-30; target sequence in upper case) that included

sequences for the predicted 50 and 30 ends. The expression vector

pSpeedET, which encodes an amino-terminal tobacco etch virus

(TEV) protease-cleavable expression and purification tag (MG-

SDKIHHHHHHENLYFQ/G), was PCR-amplified with V-PIPE

(Vector) primers. The V-PIPE and I-PIPE PCR products were mixed

to anneal the amplified DNA fragments together. E. coli GeneHogs

(Invitrogen) competent cells were transformed with the V-PIPE/

I-PIPE mixture and dispensed onto selective LB–agar plates. The

cloning junctions were confirmed by DNA sequencing. Using the

PIPE method, the part of the gene encoding residues Met1–Phe80

was excluded from the final construct. Expression was performed in

selenomethionine-containing medium with suppression of normal

methionine synthesis (Van Duyne et al., 1993). At the end of

fermentation, lysozyme was added to the culture to a final concen-

tration of 250 mg ml�1 and the cells were harvested and frozen. After

one freeze–thaw cycle, the cells were sonicated in lysis buffer [50 mM

HEPES pH 8.0, 50 mM NaCl, 10 mM imidazole, 1 mM tris(2-car-

boxyethyl)phosphine–HCl (TCEP)] and the lysate was clarified by

centrifugation at 32 500g for 30 min. The soluble fraction was passed

over nickel-chelating resin (GE Healthcare) pre-equilibrated with

lysis buffer, the resin was washed with wash buffer [50 mM HEPES

pH 8.0, 300 mM NaCl, 40 mM imidazole, 10%(v/v) glycerol, 1 mM

TCEP] and the protein was eluted with elution buffer [20 mM

HEPES pH 8.0, 300 mM imidazole, 10%(v/v) glycerol, 1 mM TCEP].

The eluate was buffer-exchanged with TEV buffer (20 mM HEPES

pH 8.0, 200 mM NaCl, 40 mM imidazole, 1 mM TCEP) using a PD-10

column (GE Healthcare) and incubated with 1 mg TEV protease per

15 mg of eluted protein. The protease-treated eluate was run over

nickel-chelating resin (GE Healthcare) pre-equilibrated with HEPES

crystallization buffer (20 mM HEPES pH 8.0, 200 mM NaCl, 40 mM

imidazole, 1 mM TCEP) and the resin was washed with the same

buffer. The flowthrough and wash fractions were combined and

concentrated to 19.6 mg ml�1 by centrifugal ultrafiltration (Millipore)

for crystallization trials. HinfPDH was crystallized using the nano-

droplet vapor-diffusion method (Santarsiero et al., 2002) with stan-

dard JCSG crystallization protocols (Lesley et al., 2002). Sitting drops

composed of 200 nl protein mixed with 200 nl crystallization solution

were equilibrated against a 50 ml reservoir at 293 K for 28 d prior to

harvest. The crystallization reagent was composed of 0.04 M potas-

sium dihydrogen phosphate, 20.0%(v/v) glycerol and 16.0%(w/v)

PEG 8000. A rod-shaped crystal of approximate dimensions 0.1 �

0.05 � 0.05 mm was harvested for data collection. No additional

cryoprotectant was added to the crystal. Initial diffraction screening

was carried out using the Stanford Automated Mounting system

(SAM; Cohen et al., 2002) at the Stanford Synchrotron Radiation
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Table 1
Summary of crystal parameters, data-collection and refinement statistics for
Hinf PDH (PDB code 2pv7).

Values in parentheses are for the highest resolution shell.

�1 MADSe �2 MADSe

Space group P41212
Unit-cell parameters (Å) a = b = 127.79, c = 100.62
Data collection

Wavelength (Å) 0.9792 0.9184
Resolution range (Å) 29.7–2.00 (2.07–2.00) 29.7–2.00 (2.07–2.00)
No. of observations 411204 412324
No. of unique reflections 56589 56593
Completeness (%) 99.6 (98.8) 99.7 (99.3)
Mean I/�(I) 12.4 (2.5) 12.9 (2.6)
Rmerge on I† (%) 6.3 (51.5) 6.2 (50.7)
Rmeas on I‡ (%) 7.3 (60.5) 7.2 (59.5)

Model and refinement statistics
Data set used in refinement �2 MADSe
Resolution range (Å) 29.7–2.00
Cutoff criterion |F | > 0
No. of reflections (total) 56541
No. of reflections (test) 2870
Completeness 99.8
Rcryst§ 0.161
Rfree} 0.194

Stereochemical parameters
Restraints (r.m.s.d. observed)

Bond angles (�) 1.61
Bond lengths (Å) 0.017

Average isotropic B value (Å2) 35.4††
ESU‡‡ based on Rfree (Å) 0.12
Protein residues/atoms 556/4427
Water molecules/ligands 393/4

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ. ‡ Rmeas =

P
hkl ½N=ðN � 1Þ�1=2

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ (Diederichs & Karplus, 1997). § Rcryst =P

hkl

�
�jFobsj � jFcalcj

�
�=
P

hkl jFobsj, where Fcalc and Fobs are the calculated and observed
structure-factor amplitudes, respectively. } Rfree is the same as Rcryst but for 5.1% of the
total reflections that were chosen at random and omitted from refinement. †† This
value represents the total B that includes TLS and residual B components. ‡‡ The
estimated overall coordinate error (Collaborative Computational Project, Number 4,
1994; Cruickshank, 1999).



Lightsource (SSRL, Menlo Park, California, USA). The crystal was

indexed in the tetragonal space group P41212. The oligomeric state of

HinfPDH was determined to be a dimer by gel filtration using a

0.8 � 30 cm Shodex Protein KW-803 column (Thomson Instruments)

equilibrated in 20 mM Tris, 200 mM NaCl, 0.5 mM TCEP pH 7.5 and

pre-calibrated with gel-filtration standards (Bio-Rad). Protein con-

centrations were determined using the Coomassie Plus assay (Pierce).

2.2. Data collection, structure solution and refinement

Multiple-wavelength anomalous diffraction (MAD) data were

collected on beamline 11-1 at the SSRL using a 0.1 � 0.1 mm X-ray

beam at wavelengths corresponding to the inflection (�1) and remote

(�2) wavelengths of a selenium MAD experiment. The data sets were

collected at 100 K using a Rayonix MAR Mosaic MX-325 CCD

detector. The MAD data were integrated and reduced using XDS and

scaled with the program XSCALE (Kabsch, 1993, 2010a,b). An initial

substructure solution was obtained with SHELXD (Sheldrick, 2008)

and the phases were refined using autoSHARP (Vonrhein et al.,

2007), which gave a mean figure of merit of 0.48 with 14 selenium

sites. Automated model building was performed with ARP/wARP

(Cohen et al., 2004). Model completion and refinement were per-

formed with Coot (Emsley & Cowtan, 2004) and REFMAC 5.2 (Winn

et al., 2003) using the high-energy remote (�2) data set. The refine-

ment included phase restraints from SHARP and TLS refinement

with three TLS groups per chain. CCP4 programs were used for data

conversion and other calculations (Collaborative Computational

Project, Number 4, 1994).

During structure refinement, additional electron density was found

at the active site. The density was well defined and could be unam-
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Figure 2
Structure of Hinf PDH. (a) Ribbon diagram of a Hinf PDH monomer complexed with NAD+ and a tyrosine molecule. Helices �1–�12 and strands �1–�7 are indicated. The
C-terminal domain is colored green and the helices and �-strands of the N-terminal domain are colored cyan and red, respectively. Bound tyrosine and NAD+ molecules are
shown in ball-and-stick representation; C, O, N and phosphate atoms are colored yellow, red, blue and orange, respectively. (b) Ribbon diagram of the Hinf PDH dimer;
monomer A is colored green and monomer B is colored orange. Helices are shown as cylinders. (c) Top view compared with (b) of the Hinf PDH dimer. (d) Diagram showing
the secondary-structure elements of Hinf PDH superimposed on its primary sequence. The labeling of secondary-structure elements is in accord with PDBsum (http://
www.ebi.ac.uk/pdbsum), where �-helices (H1–H12) and �-strands (�1–�7) are sequentially labeled, �-turns and �-turns are designated by Greek letters (�, �) and �-hairpins
are indicated by red loops.



biguously assigned to a tyrosine molecule and an NAD+ cofactor. As

these molecules were not added during the crystallization experi-

ment, they must have been acquired during protein expression and

have remained bound during purification and crystallization. Data-

collection and refinement statistics are summarized in Table 1.

2.3. Validation and deposition

The quality of the crystal structure was analyzed using the JCSG

Quality Control server (http://smb.slac.stanford.edu/jcsg/QC). This

server verifies the stereochemical quality of the model using Auto-

DepInputTool (Yang et al., 2004), MolProbity (Chen et al., 2010) and

WHATIF v.5.0 (Vriend, 1990), the agreement between the atomic

model and the data using SFCHECK v.4.0 (Vaguine et al., 1999) and

RESOLVE (Terwilliger, 2004), the protein sequence using ClustalW

(Thompson et al., 1994), the atom occupancies using MOLEMAN2

(Kleywegt, 2000) and the consistency of NCS pairs. Protein

quaternary-structure analysis was conducted using the PISA server

(http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html; Krissinel &

Henrick, 2005). Fig. 2(d) was adapted from PDBsum (Laskowski,

2009); all other figures were prepared with PyMOL (DeLano, 2002).

Atomic coordinates and experimental structure factors have been

deposited in the PDB under accession code 2pv7.

3. Results and discussion

3.1. Overall structure

The final model consists of a dimer of the PDH domain of TyrA

(residues 92–371 for chains A and B), two nicotinamide adenine

dinucleotides (NAD+), two tyrosines and 393 water molecules in the

asymmetric unit (Figs. 2a, 2b and 2c). No electron density was

observed for Gly80–Phe91, Asp312–Glu315 and Asn372–Gly377 in

chain A and Gly80–Val91 and Asn372–Gly377 in chain B. The side

chains of Lys212 and Lys348 from chain A and of Arg132, Lys212,

Lys239, Gln325 and Ala371 from chain B were omitted owing to poor

electron density. The Matthews coefficient (VM; Matthews, 1968) was

2.98 Å3 Da�1 and the estimated solvent content was 58.7%. The

Ramachandran plot produced by MolProbity showed that 98% of the

residues are in favored regions, with no outliers.

Each monomer consists of an N-terminal �/� dinucleotide-binding

domain (residues 92–243) and a C-terminal �-helical dimerization

domain (residues 244–371) (Fig. 2a). The active site is located at the

domain interface. The N-terminal domain adopts a modified Ross-

mann fold, which consists of a parallel seven-stranded �-sheet (strand

order �2-�1-�3-�4-�5-�6-�7) with the �1 helix on one face of the

�-sheet and the �2, �3, �4 and �5 helices on the other. Structural

comparisons of Hinf PDH and other nucleotide-binding proteins,

including other TyrA enzymes, show that HinfPDH lacks the �–�
structural motif between �2 and �2 that is present and is part of the

�-sheet in other nucleotide-binding proteins. The C-terminal domain

consists of seven helices (�6–�12) that form the dimer interface; the

helices from each monomer are intertwined into a tightly packed

helical bundle with a buried surface of 11 000 Å2 (Figs. 2b and 2c).

The two monomers are structurally similar to each other, with an

r.m.s.d. of 0.2 Å for 268 equivalent C� atoms.

3.2. The active site

The active site is located in the cleft between the N- and C-terminal

domains (Figs. 2a, 2b and 2c). One tyrosine and one NAD+ are bound

in each monomer (Fig. 3a). His200, Ser179 and Arg297 (Fig. 3b) are

among the important residues for enzyme catalysis and/or ligand

binding and are conserved in TyrA enzymes across all kingdoms of

life. The His200 imidazole is hydrogen bonded to the 40-OH of the

bound tyrosine. Ser179 hydrogen bonds to both the ribose O atom of

nicotinamide nucleoside and the 40-OH of the bound tyrosine and is

important for orientating prephenate and NAD+ for catalysis. The

Arg297 guanadinium forms a pair of electrostatic interactions with

the tyrosine carboxyl, which also interacts with Gln301 from the �8

helix. The tyrosine amino group hydrogen bonds to Tyr306 from �9

and Tyr2880 from �8 of the adjacent monomer. His260 is located close

to the tyrosine amino group and could be involved in regulation of

tyrosine inhibition in a similar way to His217 in A. aeolicus.

The aromatic ring of the bound tyrosine packs against the nico-

tinamide ring of NAD+ such that the 40-OH of tyrosine is approxi-

mately 4 Å away from C4 of the nicotinamide ring. Assuming that

prephenate adopts the same binding mode, the structure suggests that

the hydride is transferred from prephenate to the si face of NAD+,

which is consistent with a previous proton NMR study on the E. coli

TyrA enzyme using isotope-labeled NAD-4-d (Hermes et al., 1984).

The binding mode of NAD+ is similar to those of arogenate de-

hydrogenase from Synechocystis sp. and prephenate dehydrogenase

from A. aeolicus (Legrand et al., 2006; Sun et al., 2006). The pyro-

phosphate of NAD+ interacts with the P-loop (Gly108–Gly113)

between �1 and �1, forming hydrogen bonds to Lys111 and the main-

chain amides of Lys111 and Leu112. The diol of the adenylyl ribose

structural communications
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Figure 3
Active site of Hinf PDDH. (a) Final model of tyrosine and NAD+ molecules fitted
in 2Fo � Fc electron-density maps prior to model building as output from the last
step of XSOLVE (JCSG, unpublished work). The map is contoured at 1�. (b)
Active site of Hinf PDDH showing key active-site residues and the bound tyrosine
and NAD+ molecules in ball-and-stick representation. C atoms are colored gray for
the protein and yellow for the ligands; O, N and phosphate atoms are colored red,
blue and orange, respectively.



hydrogen bonds to Asp131 and Lys132 from the loop located

between �2 and �2. The adenine ring is sandwiched between Val152

and Arg132 from helices �2 and �3, with its N1 hydrogen bonded to

Trp135 from �2. The diol of the nicotinamide ribose is hydrogen

bonded to Ser179 and Val152. The nicotinamide ring interacts with

the protein mainly through hydrophobic interactions.

3.3. Structural comparison with other TyrA enzymes

A search with FATCAT (Ye & Godzik, 2004) using the Hinf PDH

coordinates identified the closest structural homologues of Hinf PDH

in the PDB as the prephenate dehydrogenases from A. aeolicus

(AaeoPDH; PDB code 2g5c; Sun et al., 2006) and Streptococcus

thermophilus (SthePDH; PDB code 3dzb; Z. Zhang, S. Eswara-

moorthy, S. K. Burley & S. Swaminathan, unpublished work) and the

arogenate dehydrogenase from Synechocystis sp. (SyneADH; PDB

code 2f1k; Legrand et al., 2006). HinfPDH is bifunctional, whereas

the other three enzymes are monofunctional. The pairwise sequence

identities between HinfPDH and AaeoPDH, SthePDH and

SyneADH are 20, 27 and 25%, respectively. Despite the low sequence

identity, the overall structures of these enzymes are very similar. The

structures of AaeoPDH complexed with the ligands NAD+ (PDB

code 2g5c), NAD+ and l-tyrosine (PDB code 3ggg), NADH and 4-

hydroxylphenylpyruvate (HPP; PDB code 3ggo) and NAD+ and 4-

hydroxyphenylpropionate (PDB code 3ggp) are available (Sun et al.,

2009), but only the first two structures were used for comparison

because they are sufficient to represent the two unique enzyme states;

they are denoted AaeoPDH and AaeoPDH–Tyr–NAD+, respectively.

SyneADH has an NADP+ bound at the active site and SthePDH has

no ligand bound. The dehydrogenase activity of SyneADH is strictly

dependent on arogenate and NADP+ (Legrand et al., 2006).

Conversely, NAD+ and prephenate are the preferred cofactor and

substrate for AaeoPDH, although a very low level of dehydrogenase

activity is detected when NADP+ with prephenate or NAD+ with

arogenate are used (Bonvin et al., 2006).

Although the overall fold is similar, structural comparisons

revealed important differences around the active site. Compared with

other TyrA enzymes, HinfPDH lacks an �–� structural motif between

�2 and �2, the loop between �5 and �6 (L�5–�6) is much shorter, and

an extra helix �12 is found at the C-terminus (Fig. 4). Multiple

sequence alignment of many representative TyrA proteins clearly

shows that the �–� motif and L�5–�6 represent unique structural

differences between bifunctional and monofunctional TyrA enzymes

(Fig. 5), but the extra C-terminal helix is less obviously discernable

from the sequence comparisons, presumably because the exact end

point of the prephenate dehydrogenase domain is difficult to deter-

mine for cases such as TyrA-aroF or TyrA-ACT fusions in which aroF

and ACT are fused at the C-terminal end.

In HinfPDH, L�5–�6 is eight residues shorter than in AaeoPDH,

SthePDH and SyneADH. This loop is well ordered in the HinfPDH,

AaeoPDH and SyneADH structures (Fig. 4c) but is disordered in the

SthePDH structure owing to the absence of bound cofactor. In

AaeoPDH and SyneADH, this loop extends along the cofactor-

binding site. Ser155 in AaeoPDH and Gln120 in SyneADH are in

structurally equivalent positions (Fig. 4c) and both form hydrogen

bonds to the pyrophosphate O atom of the bound cofactor. However,
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Figure 4
Structural differences between Hinf PDH and its structural homologues. (a) Superimposition of Hinf PDH, AaeoPDH, SthePDH and SyneADH reveals unique structural
differences in Hinf PDH including a missing �–� motif, a shorter L�5–�6 loop, and an extra C-terminal helix. Hinf PDH is colored green or orange for each monomer. The
AaeoPDH, SthePDH and SyneADH structures are colored magenta, yellow and blue, respectively. Bound tyrosine and NAD+ molecules are shown in ball-and-stick
representation. (b) Enlarged view of the area around the �–�motif showing that Hinf PDH is missing the �–�motif compared with AaeoPDH, SthePDH and SyneADH. (c)
Enlarged view of the area around L�5–�6. Lys111 of Hinf PDH is shown with a green backbone, Ser155 of AaeoPDH is in magenta and Gln120 of SyneADH is in blue. (d)
Enlarged view of the C-terminal area showing that an extra C-terminal helix is present in Hinf PDH. The �7 and �8 helices of Hinf PDH superimposed onto structurally
equivalent helices in AaeoPDH, SthePDH and SyneADH are also indicated.



in HinfPDH no residue is structurally equivalent because of the

shorter loop and Lys111 from �1 instead provides the equivalent

interaction with the pyrophosphate O atom (Fig. 4c). The equivalent

residues to Lys111 in AaeoPDH and SyneADH are Phe40 and Leu10,

respectively, and neither side chain can form hydrogen bonds to the

pyrophosphate. This suggests that although a shorter L�5–�6 loop has

evolved in HinfPDH, the ability to bind cofactor is not affected.

In SyneADH, the phosphate group of the adenosine ribose of

NADP+ is recognized by helical residues in the �–� motif. The

phosphate group is stabilized by electrostatic interaction with Arg31

and hydrogen-bonding interactions with Gln32 and Thr35, as well as

with the main chain of Arg31 and Gln32. The equivalent residues in

AaeoPDH are Ile63, Asn64 and Ser67. A loss of electrostatic inter-

action caused by the substitution of Arg by Ile may explain why

AaeoPDH prefers NAD+ over NADP+ as cofactor. In SthePDH, the

equivalent residues are Arg36, Ser37 and Ser40. Thus, the ability to

form electrostatic and hydrogen-bonding interactions is similar to

that of SyneADH, suggesting that SthePDH is capable of binding

NADP+. In HinfPDH, Arg132 is structurally equivalent to SyneADH

Arg31, but residues equivalent to Gln32 and Thr35 are absent owing

to the lack of the �–� structural motif. It is possible that Hinf PDH

also prefers NAD+ over NADP+ in a manner similar to bifunctional

TyrA enzymes from E. coli and K. pneumonia.

A smaller local difference among these TyrA structures is the loop

joining �7 and �8 and the adjacent residues (Fig. 4d). This loop takes

a wider turn in HinfPDH compared with that in AaeoPDH, SthePDH

and SyneADH and is positioned next to �12. Ser284–Leu290 in this

region are highly conserved in TyrAc_� sequences, suggesting that

they play important roles.

3.4. Global conformational change

Another important difference between HinfPDH and other TyrA

structures is the relative orientation of the respective N- and

C-terminal domains. Pairwise structural alignment of HinfPDH with

AaeoPDH, AaeoPDH–Tyr–NAD+, SthePDH and SyneADH using

only the N-terminal domain gives r.m.s.d.s of 1.8, 1.7, 1.9 and 1.5 Å,

respectively, for 128–132 superimposed C� atoms (0.8–0.9 Å for core

�-sheet residues). Upon structural superimposition, it is immediately

noticeable that differences in the relative orientation of the N- and

C-terminal domains are present in these TyrA structures (Figs. 6a and

6b). A hinge region around Glu242–Asn244 connects the N- and

C-terminal domains at the domain interface opposite to the

substrate-binding site. Superimposition using the C-terminal domain

gives similar results, although the results are less obvious owing to

internal structural differences within the C-terminal domains of these

TyrA structures. Therefore, the discussion below is based on super-

impositions using the N-terminal domain.

Using the C-terminal domain of HinfPDH as a reference, the

C-terminal domains of AaeoPDH, SthePDH and SyneADH are

farther away from the substrate-binding site; therefore, Hinf PDH

represents the most closed form, SyneADH is the most open form

and AaeoPDH and SthePDH are in intermediate states (Figs. 6a and

6b). Monomer B of AaeoPDH–Tyr–NAD+ has both NAD+ and

tyrosine bound and the conformation is closed, similar to HinfPDH.

Monomer A of AaeoPDH–Tyr–NAD+ only has NAD+ bound and the

conformation is similar to AaeoPDH. Comparison of the AaeoPDH

and AaeoPDH–Tyr–NAD+ structures suggest that tyrosine induces a

conformational change upon binding. Hence, it is possible that the

binding of tyrosine to Hinf PDH also induces a conformational

change from an open to a closed form and the closed form is captured

in the current Hinf PDH structure. A crystal structure of apo

Hinf PDH could provide direct evidence for this proposal. In the

closed conformation, �6, �8, �9 and �80 (�8 from monomer B) are

close to the bound tyrosine and �8 and �120 (�12 from monomer B)

are near L�5–�6, facilitating closure of the active site and the proper

alignment of active-site residues for catalysis. Key active-site residues

in this region include His260 (�6), Arg297, Gln301 (�8), Tyr2880

(�80), Tyr306 (�9), Arg3650 (�120) and Asp206 (L�5–�6). If a tyrosine

molecule is modeled adjacent to the cofactor in AaeoPDH and

SthePDH, the residue equivalent to Arg297 of Hinf PHDH is too

distant to interact with the tyrosine. The conformational change is
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Figure 5
Multiple sequence alignment of representative TyrA enzymes. Regions around the �–�motif and L�5–�6 are shown. Abbreviations: Hinf, Haemophilus influenzae Rd KW20;
Etas, Erwinia tasmaniensis Et1/99; Ecol, Escherichia coli str. K-12 substr. MG1655; Plum, Photorhabdus luminescens subsp. laumondii TTO1; Pmul, Pasteurella multocida
subsp. multocida str. Pm70; Vcho, Vibrio cholerae O1 biovar eltor str. N16961; Vpar, Vibrio parahaemolyticus RIMD 2210633; Yent, Yersinia enterocolitica subsp.
enterocolitica 8081; Aful, Archaeoglobus fulgidus; Syne, Synechocystis sp. (Legrand et al., 2006); Atha, Arabidopsis thaliana (Rippert & Matringe, 2002); Npun, Nostoc
punctiforme PCC 73102 (Song et al., 2005); Zmob, Zymomonas mobilis (Zhao et al., 1993); Paer, Pseudomonas aeruginosa PA7 (Xia & Jensen, 1990); Pstu, Pseudomonas
stutzeri (Xie et al., 2000); Aaeo, Aquifex aeolicus VF5 (Bonvin et al., 2006); Bsub, Bacillus subtilis (Champney & Jensen, 1970); Sthe: Streptococcus thermophilus LMG 18311
(Song et al., 2005); Efae, Enterococcus faecalis V583 (Song et al., 2005).



independent of cofactor binding as the structures of SyneADH with

NADP+ bound, AaeoPDH with NAD+ bound and SthePDH without

any cofactor are all in similar open conformations.

In the closed conformation of HinfPDH an ionic network con-

sisting of Arg297, a bridging water molecule, Asp206 from L�5–�6 and

Arg3650 from �120 is observed that may be involved in gating the

active site (Fig. 6c). The bridging water is present in both monomers.

The Arg3650 side chain adopts dual conformations, with one con-

formation participating in the ionic network and the other pointing

away from the active site. This dual conformation may be part of the

gating mechanism, in which an ionic network forms on closure of the

active site after substrate is bound and is broken when the product is

released. It is worth noting that Asp206 is absolutely conserved and

Arg365 is highly conserved in chorismate mutase/prephenate dehy-

drogenase sequences but not in monofunctional TyrA enzymes. Thus,

the active-site gating mechanism might be different in bifunctional

and monofunctional TyrA enzymes.

3.5. Insights into the catalytic mechanism

Previous studies on the pH-dependence of the E. coli TyrA enzyme

showed that a catalytic group with a pKa value of about 6.5 is de-

protonated for dehydrogenase activity (Turnbull, Cleland et al.,

1991). Subsequent site-directed mutagenesis experiments revealed

that this critical catalytic residue is His197 (Christendat et al., 1998).

The catalytic mechanism of the oxidative decarboxylation of E. coli

TyrA was investigated and suggested a concerted mechanism in which

hydride transfer and decarboxylation occur in a concerted manner. It

was proposed that His197 provides the driving force for the dehy-

drogenase reaction by polarizing the 40-hydroxyl group of prephenate

(Christendat et al., 1998). It was also postulated that since the end-

product of the reaction is aromatic, polarization of the 40-OH group is

sufficient to lower the energy barrier for the reaction, rather than

deprotonation of the 40-OH group to form a �-keto acid intermediate

in a stepwise mechanism. The crystal structure of HinfPDH shows

that the N"2 atom of His200 (equivalent to His197 in E. coli TyrA) is

hydrogen bonded to the 40-hydroxyl group of tyrosine at a distance of

�2.6 Å. A hydrogen-bonding network between His200, His248 and

Asp249 is observed in which His200 N�1 hydrogen bonds to

His248 N(H)"2 and His248 N(H)�1 hydrogen bonds to Asp249 O�1.

Asp249 is located near the protein surface. As for His200, His248 and

Asp249 are highly conserved in TyrA sequences. This hydrogen-

bonding network can help to maintain His200 N"2 in a deprotonated

state. The Ser179 hydrogen bond to the 40-OH of the bound tyrosine

can provide an additional driving force for the reaction by polarizing

the 40-OH group since the equivalent Ser126 in AaeoPDH is critical

for catalysis. In addition, HinfPDH and E. coli TyrA share 57%

sequence identity in their prephenate dehydrogenase domains and all

key active-site residues are conserved. Hence, HinfPDH is likely to

adopt a concerted mechanism for dehydrogenase reaction as found

for E. coli TyrA. In HinfPDH, tyrosine is bound directly at the

catalytic site, suggesting that it acts as a competitive inhibitor.

How TyrA enzymes evolved to be specific for prephenate or

arogenate is intriguing because prephenate and arogenate have very

similar structures. In Hinf PDH, Gln301, Tyr306, Tyr288 and His260

are positioned close to the amino and carboxyl groups of the bound

tyrosine and could be involved in substrate specificity (Fig. 6c).

Gln301, Tyr306 and Tyr288 are highly conserved in bifunctional TyrA

sequences. In other TyrA sequences, Gln301 is replaced by Gly, Ser or

Thr. Tyr306 is relatively conserved as Trp in TyrAp and TyrAc, but is

Trp, Gly or Val in TyrAa. Tyr288 is located at the N-terminus of �8,

where some local structural differences are found between Hinf PDH
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Figure 6
Superimposition of TyrA structures showing differences in the relative orientation
of the N- and C-terminal domains and a close-up view of the active site of
Hinf PDH. (a) Superimposition of Hinf PDH, AaeoPDH, AaeoPDH–Tyr–NAD+,
SthePDH and SyneADH reveals differences in the relative orientation of the N-
and C-terminal domains in these TyrA proteins. Hinf PDH, AaeoPDH, AaeoPDH
(monomer B)–Tyr–NAD+, SthePDH and SyneADH are colored green, magenta,
orange, cyan and blue, respectively. (b) Same orientation as (a); for clarity, only
Hinf PDH and SyneADH are shown. (c) An ionic network in the active site of
Hinf PDH consists of Arg297, a bridging water molecule, Asp206 and Arg3650 from
adjacent molecule in a dual conformation. His260, Tyr288, Gln301 and Tyr306 that
could be involved in substrate selectivity are also shown. Hydrogen bonds are
indicated as dashed lines.



and other TyrA structures. Alignment of TyrA sequences shows a gap

of approximately four residues around Tyr288 in the TyrAp, TyrAa

and TyrAc sequences. His260 is conserved in TyrA, except for some

TyrAas, where it is Val or Gln. Given the structural resemblance

between prephenate and arogenate, further experiments to elucidate

the exact prephenate-binding mode will advance our understanding

of substrate specificity in TyrA enzymes.

4. Conclusions

HinfPDH is the first prephenate dehydrogenase structure to be

determined from a bifunctional TyrA enzyme. This structure reveals

active-site residues that are important for catalysis and/or ligand

binding and are consistent with previously determined structures of

other TyrA enzymes. The comparison of HinfPDH with other known

TyrA structures indicates important differences that appear to be

characteristic features that differentiate the bifunctional and mono-

functional TyrA enzymes and suggest that the regulation of enzyme

activity is likely to differ between bifunctional and monofunctional

TyrA enzymes. These structural differences may be related to the

presence of a chorismate mutase domain in the bifunctional TyrA

enzymes. A crystal structure of full-length H. influenzae TyrA should

provide insight into this question. Additional information about the

proteins described in this study is available from TOPSAN (Krishna

et al., 2010) at http://www.topsan.org/explore?PDBid=2pv7.
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